LM338 Power Supply +13.8V 5A

This ac to dc power supply can output 5A in continous operation and 12A peak current. This kind of dc power supplies uses a PCB so you can use two case types for IC1, TO-220 or TO-3. The regulation of this 12 volt power supply is made with TR1 ( multiturn ). IC1 must be placed on proper heatsink.

LM338 Power Supply Circuit Diagram :

power suply

Leave a comment

Filed under Power Suply

Soft Start For Switching Power Supply


Switching power supply whose output voltage is appreciably lower than its input voltage has an interesting property: the current drawn by it is smaller than its output current. However, the input power (UI) is, of course, greater than the output power. There is another aspect that needs to be watched: when the input voltage at switch-on is too low, the regulator will tend to draw the full current. When the supply cannot cope with this, it fails or the fuse blows. It is, therefore, advisable to disable the regulator at switch-on (via the on/off input). until the relevant capacitor has been charged. When the regulator then starts to draw current, the charging current has already dropped to a level which does not overload the voltage source.

Circuit diagram:
 Soft Start Circuit Diagram For Switching Power Supply

Soft Start Circuit For Switching Power Supply
The circuit in the diagram provides an output voltage of 5 V and is supplied by a 24 V source. The regulator need not be disabled until the capacitor is fully charged: when the potential across the capacitor has reached a level of half or more of the input voltage, all is well. This is why the zener diode in the diagram is rated at 15 V. Many regulators produced by National Semiconductor have an integral on/off switch, and this is used in the present circuit. The input is intended for TTL signals, and usually consists of a transistor whose base is accessible externally. This means that a higher switching voltage may be applied via a series resistor: the value of this in the present circuit is 22 kΩ. When the voltage across the capacitor reaches a level of about 17 V, transistor T1 comes on, whereupon the regulator is enabled.

Leave a comment

Filed under Power Supply

Simple Stereo VU Meter

I like to see lights move to music. This project will indicate the volume level of the audio going to your speakers by lighting up LEDS. The LEDS can be any color so mix them up and really make it look good. The input of the circuit is connected to the speaker output of your audio amplifier. You want to build two identical units to indicate both right and left channels. The input signal level is adjusted by the 10k ohm VR. If you wish to make a very large scale model of this unit and hang it on your wall there is an optional output transistor that can drive many LEDS at once. The unit I built drove three LEDS for each output. The sequence of the LEDS lighting are as follows Pin 1, 18, 17, 16, 15, 14, 13, 12, 11, 10.

Leave a comment

Filed under Meters

Touch Switch II

This circuit uses a 555 timer as the bases of the touch switch. You can learn more about 555 timers in the Learning section on my site. When the plate is touched the 555 timer is triggered and the output on pin 3 goes high turning on the LED and the buzzer for a certain period of time. The time that the LED and the buzzer is on is based on the values of the capacitor and resistor connected to pin 6 & 7. The 10M resistor on pin 2 causes the the circuit to be very sensitive to the touch.

Leave a comment

Filed under 555, Switches


In the last few years, the available range of operating systems for PCs has increased dramatically. Various free (!) operating systems have been added to the list, such as BeOS, OpenBSD and Linux. These systems are also available in different colours and flavours (versions and distributions). Windows is also no longer simply Windows, because there are now several different versions (Windows 95, 98, ME, NT, XP, Vista and 7). Computer users thus have a large variety of options with regard to the operating system to be used. One problem is that not all hardware works equally well under the various operating systems, and with regard to software, compatibility is far from being universal. In other words, it’s difficult to make a good choice.


Switching from one operating system to another – that’s a risky business, isn’t it? Although this may be a bit of an exaggeration, the safest approach is still to install two different operating systems on the same PC, so you can always easily use the ‘old’ operating system if the new one fails to meet your needs (or suit your taste). A software solution is often used for such a ‘dual system’. A program called a ‘boot manager’ can be used to allow the user to choose, during the start-up process, which hard disk will be used for starting up the computer. Unfortunately, this does not always work flawlessly, and in most cases this boot manager is replaced by the standard boot loader of the operating system when a new operating system is installed.

In many cases, the only remedy is to reinstall the software. The solution presented here does not suffer from this problem. It is a hardware solution that causes the primary and secondary hard disk drives to ‘swap places’ when the computer is started up, if so desired. From the perspective of the computer (and the software running on the computer), it appears as though these two hard disks have actually changed places. This trick is made possible by a feature of the IDE specification called ‘CableSelect’. Every IDE hard disk can be configured to use either Master/Slave or CableSelect. In the latter case, a signal on the IDE cable tells the hard disk whether it is to act as the master or slave device. For this reason, in every IDE cable one lead is interrupted between the connectors for the two disk drives, or the relevant pin is omitted from the connector.


This causes a low level to be present on the CS pin of one of the drives and a high level to be present on the CS pin of the other one (at the far end of the cable). The circuit shown here is connected to the IDE bus of the motherboard via connector K1. Most of the signals are fed directly from K1 to the other connectors (K2 and K3). An IDE hard disk is connected to K2, and a second one is connected to K3. When the computer is switched on or reset, a pulse will appear on the RESET line of the IDE interface. This pulse clocks flip-flop IC1a, and depending on the state of switch S1, the Q output will go either high or low. The state on the Q output is naturally always the opposite of that on the Q output. If we assume that the switch is closed during start-up, a low level will be present on D input of IC1a, so the Q output will be low following the reset pulse.


This low level on the Q output will cause transistor T1 to conduct. The current flowing through T1 will cause LED D1 to light up and transistor T2 to conduct. The hard disk attached to connector K2 will thus see a low level on its CS pin, which will cause it to act as the master drive and thus appear to the computer as the C: drive. A high level will appear on the Q output following the reset pulse. This will prevent T3 and T4 from conducting, with the consequence that LED D2 will be extinguished and the hard disk attached to connector K3 will see a high level on its CS pin. For this disk, this indicates that it is to act as a slave drive (D: drive).


If S1 is open when the reset pulse occurs, the above situation is of course reversed, and the hard disk attached to connector K2 will act as the D: drive, while the hard disk attached to connector K3 will act as the C: drive. Flip-flop IC1a is included here to prevent the hard disks from swapping roles during use. This could have disastrous consequences for the data on the hard disks, and it would most likely cause the computer to crash. This means that you do not have to worry about affecting the operation of the computer if you change the switch setting while the computer is running. The state of the flip-flop, and thus the configuration of the hard disks, can only be changed during a reset.

The circuit is powered from a power connector for a 3.5-inch drive. This advantage of using this connector is that it easily fits onto a standard 4-way header. However, you must observe the correct polarity when attaching the connector. The red lead must be connected to pin 1. Constructing the hard disk selector is easy if the illustrated printed circuit board is used. You will need three IDE cables to connect the circuit. The best idea is to use short cables with only two connectors, with all pins connected 1:1 (no interruption in the CS line). The IDE connector on the motherboard is connected to K1 using one cable. A cable then runs from K2 to first hard disk, and another cable runs from K3 to the second hard disk. This means that it is not possible to connect more than two hard disks to this circuit. You must also ensure that the jumpers of both disk drives are configured for CableSelect. To find out how to do this, refer to the user manual(s) for the drives.

Leave a comment

Filed under Computer related

Mains Supply Failure Alarm


Whenever AC mains supply fails, this circuit alerts you by sounding an alarm. It also provides a backup light to help you find your way to the torch or the generator key in the dark. The circuit is powered directly by a 9V PP3/6F22 compact battery. Pressing of switch S1 provides the 9V power supply to the circuit. A red LED (LED2), in conjunction with zener diode ZD1 (6V), is used to indicate the battery power level.

Resistor R9 limits the operating current (and hence the brightness) of LED2. When the battery voltage is 9V, LED2 glows with full intensity. As the battery voltage goes below 8V, the intensity of LED2 decreases and it glows very dimly. LED2 goes off when the battery voltage goes below 7.5V. Initially, in standby state, both the LEDs are off and the buzzer does not sound. The 230V AC mains is directly fed to mains-voltage detection optocoupler IC MCT2E (IC1) via resistors R1, R2 and R3, bridge rectifier BR1 and capacitor C1.

Illumination of the LED inside optocoupler IC1 activates its internal phototransistor and clock input pin 12 of IC2 (connected to 9V via N/C contact of relay RL1) is pulled low. Note that only one monostable of dual-monostable multivibrator IC CD4538 (IC2) is used here. When mains goes off, IC2 is triggered after a short duration determined by components C1, R4 and C3. Output pin 10 of IC2 goes high to forward bias relay driver transistor T1 via resistor R7.

Circuit diagram:

mains supply failure alarm circuit schematic
Mains Supply Failure Alarm Circuit Diagram
Relay RL1 energises to activate the piezo buzzer via its N/O contact for the time-out period of the monostable multivibrator (approximately 17 minutes). At the same time, the N/C contact removes the positive supply to resistor R4. The time-out period of the monostable multivibrator is determined by R5 and C2. Simultaneously, output pin 9 of IC2 goes low and pnp transistor T2 gets forward biased to light up the white LED (LED1).

Light provided by this back-up LED is sufficient to search the torch or generator key. During the mono time-out period, the circuit can be switched off by opening switch S1. The ‘on’ period of the monostable multivibrator may be changed by changing the value of resistor R5 or capacitor C2. If mains doesn’t resume when the ‘on’ period of the monostable lapses, the timer is retriggered after a short delay determined by resistor R4 and C3.

 
 
Source: EFY Mag

Leave a comment

Filed under Alarm Security

Sensitive Audio Power Meter

As a follow-up to the simple audio power  meter described in [1], the author has developed a more sensitive version. In practice,  you  rarely  use  more  than  1 watt  of  audio  power in a normal living-room environment.  The only time most people use more is at a  party when they want to show how loud their  stereo system is, in which case peaks of more  than 10 W are not uncommon. With this circuit, the dual LED starts to light up  green at around 0.1 watt into 8 ohms (0.2 watt  into 4 ohms). Naturally, this depends on the  specific type of LED that is used.

 
Circuit diagram:
Sensitive Audio Power Meter-Circuit-Diagram

Sensitive Audio Power Meter Circuit Diagram
 
Here it is  essential to use a low current type. The capacitor is first charged via D1 and then discharged via the green LED. This voltage-doubler effect  increases the sensitivity of the circuit. Above a level of 1 watt, the transistor limits the current through the green LED and the red LED con ducts enough to produce an orange hue.The red colour predominates above 5 watts. Of course, you can also use two separate ‘normal’ LEDs. However, this arrangement cannot generate an orange hue. For any testing that may be necessary, you should use  generator with a DC-coupled output. If there is a capacitor in the output path, it can cause misleading results. 
 

Reference: Simple Audio Power Meter, Elektor July & August 2008.

Author : Michiel Ter Burg Streampowers

Leave a comment

Filed under Meters

Simple Voltmeter Circuit

his circuit provides a simple means to determine the voltage of a low-impedance voltage source. It works as follows. P1, which is a 1-W potentiometer, forms a voltage divider in combination with R1. The voltage at their junction is buffered by T1, and then passed to reference diode D1 via R3. D1 limits the voltage following the resistor to 2.5 V. An indicator stage consisting of T2, R4 and LED D2 is connected in parallel with D1. As long as the voltage is not limited by D1, the LED will not be fully illuminated. This is the basic operating principle of this measurement circuit.
 
Simple Voltmeter Circuit Diagram1Simple Voltmeter Circuit Diagram1Simple Voltmeter Circuit Diagram1Simple Voltmeter Circuit Diagram1

Leave a comment

Filed under Meters

LED Volt Meter Circuit

Here is a Simple LED Volt meter to Monitor the charge level in Lead Acid Battery or Tubular battery. The terminal voltage of the battery is indicated through a four level LED indicators. The nominal terminal voltage of a Lead Acid battery is 13.8 volts and that of a Tubular battery is 14.8 volts when fully charged. The LED voltmeter uses four Zener diodes to light the LEDs at the precise breakdown voltage of the Zener diodes. Usually the Zener diode requires 1.6 volts in excess than its prescribed value to reach the breakdown threshold level. When the battery holds 13.6 volts or more, all the Zener breakdown and all LEDs light up. When the battery is discharged below 10.6 volts, all the LEDs remain dark. So depending on the terminal voltage of the battery, LEDs light up one by one or turns off.
Circuit diagram:

LED-Volt-Meter-circuit-diagram12 LED Volt Meter Circuit Diagram
 

Leave a comment

Filed under Meters

Linear RF Power Meter Circuit

The National Semiconductor LMV225 is a linear RF power meter IC in an SMD package. It can be used over the frequency range of 450 MHz to 2000 MHz and requires only four external components. The input coupling capacitor isolates the DC voltage of the IC from the input signal. The 10-k? resistor enables or disables the IC according to the DC voltage present at the input pin. If it is higher than 1.8 V, the detector is enabled and draws a current of around 5–8 mA. If the voltage on pin A1 is less than 0.8 V, the IC enters the shutdown mode and draws a current of only a few microampères. The LMV225 can be switched between the active and shutdown states using a logic-level signal if the signal is connected to the signal via the 10-kR resistor.
 
Circuit diagram:
linear-rf-power-meter-circuit-diagram1 Linear RF Power Meter Circuit Diagram
 

The supply voltage, which can lie between +2.7 V und +5.5 V, is filtered by a 100nF capacitor that diverts residual RF signals to ground. Finally, there is an output capacitor that forms a low-pass filter in combination with the internal circuitry of the LMV225. If this capacitor has a value of 1 nF, the corner frequency of this low-pass filter is approximately 8 kHz. The corner frequency can be calculated using the formula fc = 1 ÷ (2 p COUT Ro) where Ro is the internal output impedance (19.8 k?). The output low-pass filter determines which AM modulation components are passed by the detector.

rf-power-meter-circuit-diagram2

The output, which has a relatively high impedance, provides an output voltage that is proportional to the signal power, with a slope of 40 mV/dB. The output is 2.0 V at 9 dBm and 0.4 V at –40 dBm. A level of 0 dBm corresponds to a power of 1 mW in 50 R. For a sinusoidal wave-form, this is equivalent to an effective voltage of 224 mV. For modulated signals, the relationship between power and voltage is generally different. The table shows several examples of power levels and voltages for sinusoidal signals. The input impedance of the LMV225 detector is around 50 R to provide a good match to the characteristic impedance commonly used in RF circuits.
The data sheet for the LMV225 shows how the 40-dB measurement range can be shifted to a higher power level using a series input resistor. The LMV225 was originally designed for use in mobile telephones, so it comes in a tiny SMD package with dimensions of only around 1 × 1 mm with four solder bumps (similar to a ball-grid array package). The connections are labelled A1, A2, B1 and B1, like the elements of a matrix. The corner next to A1 is bevelled.

Leave a comment

Filed under Meters